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Universal features of the shapes of percolation clusters and 
lattice animals 

Joseph A AronovitztS and Michael J Stephen$ 
t Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA 
i Physics Department, Rutgers University, New Brunswick, NJ 08903, USA 

Received 12 August 1986 

Abstract. The shapes of percolation clusters and lattice animals are investigated. The 
universal quantities Ad and s d ,  which were introduced to measure the average asymmetry 
and degree of prolate- or oblateness, respectively, of long-chain polymers, are here com- 
puted in an E expansion for percolation clusters and for lattice animals. A,, is computed 
to O( E ) ,  while S, is computed to O( 1). The clusters are shown to be on average anisotropic 
and prolate, but less so than polymers. Percolation clusters and lattice animals have 
identical shapes above eight dimensions. Below d = 8 animals are slightly more anisotropic 
than percolation clusters. 

1. Introduction 

The properties of clusters in percolation-type lattice models have long been of physical 
interest [ 11.  For instance, percolation models describe the connectivities of random 
networks and are connected with phase transitions in magnetic systems with quenched 
positional disorder. Lattice animals are closely related to dilute solutions of branch 
polymers in good solvents [2]. Most investigations into such models to date have been 
directed towards computing average cluster sizes and densities. The question of cluster 
shapes has remained open. 

Recently, Family et a1 [3] used numerical techniques to investigate the shapes, in 
two dimensions, of bond and growing bond percolation clusters at the percolation 
threshold p c ,  and of lattice animals. They found in all three cases that the average 
cluster is quite asymmetric in the limit of large clusters. At first, this result seems to 
be surprising. After all, the underlying ensembles of all three models are isotropic. 
However, isotropy of an ensemble only implies that a given cluster conformation will 
appear with equal probability in arbitrary orientations. The degree of anisotropy of 
a typical conformation is a question of phase space, rather than of the symmetry of 
the ensemble. 

The observed anisotropy of clusters is quite similar to that computed for long-chain 
polymers in dilute solutions of either good or theta solvents. Over the last fifteen years, 
asymmetries in polymer shapes have been investigated in a number of Monte Carlo 
studies [4-91. Recently, analytic progress has also been made. In the last year 
parameters describing polymer shapes have been computed in mean-field theory [lo], 
in an expansion in the inverse spatial dimension l / d  [ 1 1 3  and in an E expansion [ 121. 

$ Present address: Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA. 
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The l / d  expansion takes advantage of the fact that for d = 03 there is really only one 
random walk of finite length, while the other calculations were made possible by 
characterising the polymer shapes in terms of analytically computable parameters. 

In this paper we apply Aronovitz and Nelson's [12] characterisations of shape, 
A d ?  and S d  to both bond percolation and  to lattice animals. We compute these 
quantities at pc because they are universal there. Our results show that both models 
have inherent anisotropy and that lattice animals are slightly more anisotropic than 
percolation clusters. In  0 2 we describe how Ad and s d  characterise shapes and adapt 
these measures to clusters. We prove rigorous bounds on Ad and s d  in d dimensions 
in appendix 1. In § 3, we use the connection between bond percolation and the n-state 
Potts model in the n + 1 limit [ 131 to compute Ad in an  E = 6 - d expansion to O( E ) ,  

and to compute S d  to o( 1). In 0 4, we use a similar connection between lattice animals 
and  the n + 0 limit of a modified Potts model [ 141 to extend the calculation of § 3 to 
the lattice animal case, now in an  E = 8 - d expansion. Finally, in 5 5 we discuss our 
results and  compare them to corresponding results on the shapes of polymers. 

2. Characterising cluster shapes 

In order to study cluster shapes, we must first define quantities which measure the 
shape of the average cluster and are computable. Suppose that the shape of a given 
cluster G is characterised by a symmetric, positive definite tensor Q ( G ) ,  for example 
the moment of inertia, having eigenvalues A I  5. . . Z  A d .  If all the A ,  are equal, G is 
spherically symmetric. Otherwise, we can probe the anisotropy of G by studying 
variations in the A , .  

Family et a1 [3] choose to define an  asymmetry measure A ( G )  = A d / / \ , .  A satisfies 

O s A s l  (2.1) 
with A( G )  = 1 corresponding to spherical symmetry. They numerically average A over 
ensembles of two-dimensional clusters containing N sites, and in the limit N + CO in 
two dimensions find that 

~;"lmaIs I 0.29 (2.2a) 

(2.26) 

These results show that both animals and percolation clusters are, on average, 
anisotropic, the animals slightly more so. 

Unfortunately, A is quite difficult to treat analytically. Computing averages of 
specific eigenvalues would require diagonalising a d x d matrix of fields explicitly and  
then averaging the resulting expression. A more tractable approach is that used by 
Aronovitz and Nelson to study polymer shapes. They characterise the shapes using 
ratios of rotationally invariant polynomials of Q,,. Averages of such polynomials 
become Green functions upon mapping the problem onto a field theory. Their ratios 
can then be computed in an  E expansion. 

Let the average eigenvalue of Q be 

Ayrcolatton - - 0.4. 

- 1  1 A = -  A , = , T r Q .  
d ,  

* Rudnick and  Gaspari  [ I O ]  compute A d  for polymers (called A < , )  in mean-field theory. 
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It is convenient to define Q, the traceless version of Q:  

Q = Q - I l .  

If G were spherical, then Q would be 0. The relative eigenvalue variance 

2541 

(2.4) 

Tr Q’ (9) * = d 2  

is a measure of the anisotropy of G. We prove in appendix 1 that for each cluster G 

d 
Os-Tr Q ’ ( G ) s ( T r  Q(G))’. (2.5) d - 1  

Upon averaging, (2.5) leads to the exact inequality 

d (Tr Q 2 )  
O s A d = -  

d - 1 ((Tr Q)’)s ’ ’  

We choose Ad as a normalised measure of anisotropy. 

dimensions, 
The character of the anisotropy of G is reflected by T ( G )  = Tr 6’. In three 

Tr Q3= 3 det 6 = 3(A, -I)(A2-I)(A3-i)  
so that T is positive when G is prolate and is negative when G is oblate. We show 
in appendix 1 that, even in higher dimensions, the sign of T still reflects the relative 
number of large and small eigenvalues in Q. We also prove that 

Tr 6’s (Tr Q)’. 
(Tr Q)’ d2 
(d  - l ) ’ < ( d  - l ) ( d  - 2 )  

-~ (2 .7)  

Upon averaging, (2.7) proves that S d t ,  our normalised measure of the character of 
cluster anisotropy, satisfies 

d’ (Tr 4’) s Sd 3 
1 -~ 

( d  - 1)’ ( d - l ) ( d - 2 ) ( ( T r Q ) ’ ) < ’  

In order to completely specify Ad and S d ,  we still must define the shape tensor 
Q( G). Suppose G is a connected cluster of bonds on a lattice whose a t h  site is located 
at re.  Further assume that the origin is connected to G, and define 

if the sites a , ,  . . . , a ,  are connected to G 
otherwise. (2.9) ChTl’d,!,(G) = 

Notice that the C“’  have the factorisation property 

CLT,+d,i,(G)= ChZ,’(G)Ch’;(G). . .  C‘L?,:(G). 

Using C‘*’, the cluster’s centre of mass F and number of sites s can be written 

s = CL2’(G). 
0 

(2.10a) 

(2. lob) 

t This definition of Sd differs from that in [12] by a factor of two. 
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The shape of G is characterised by the radius of gyration tensor 

1 
R f )  =; 1 ( r p  - fi)( rp - ()CL''( G ) .  

a 

(2.11) 

We will find it computationally convenient to use instead the rescaled tensor Q = s2R'", 
which can be rewritten 

( 2 . 1 2 ~ )  

(2.12b) 

-~a,,a,,(q=oC'3'(q, -4; G).  (2.12c) 

Similarly, we can write 

( 5 )  (2.12d) 

(2.12e) Q y Q k f Q m n  = (-11 a,a, a k a f  a m ~ ~ I q ~ = 0 C ( ' ) ( q 1 ,  . . . , -q3; G )  

where at means a/aqt. Using (2.12), we can compute Ad and s d  using only ensemble 
averages of Fourier transformed C'"'). Let (e"'= (C'"')), where ( ) is an ensemble 
average. Then inserting (2.12) into (2.6) and into (2.8) yields 

I 2 1 1 2 2  
Q y  Qkf =(-TI akaf Iq8=oc  (ql, -ql, q2,  -q2;  G) 

1 3 1 1 z z 3  

d 2  0 ( V , , V 2 ,  V3)(e(')(q1,. . . , - q3 )  s -  
- ( d  - l ) ( d  -2 )  [V:V:V:],~=O(e(')(q', . . . , -q3) 

(2.13b) 

O ( v l ,  v 2 ,  v 3 )  * v 2 ) ( v 2  ' v 3 ) ( v 1  v 3 )  

- (1 /  d)(V:(V, - V$+ permutations) + (2/dz)V$'iV:]q~=o. (2.13 c) 

We now proceed to evaluate (2.13) for bond percolation and lattice animals. 

3. Bond percolation 

In bond percolation, we average over all configurations of bonds on the lattice using 
a bond occupation probability p .  Each configuration is thus weighted by p N b q B - N b ,  

where B is the total number of bonds, Nb is the number of occupied bonds for this 
configuration, 0 d p 6 1 and q = 1 - p .  It is worth noticing that this ensemble of lattice 
configurations leads to the same single-cluster statistics as would come from averaging 
over all connected clusters, if each cluster is weighted by pNkqNi,  where N t  is the 
number of bonds in the cluster and N'p is the number of unoccupied bonds on the 
cluster's perimeter. NE and N', are illustrated in figure 1 .  

We will compute A and S at the percolation threshold p c .  Because the average 
number of sites in a cluster goes to infinity as p + p c - ,  we expect the large clusters to 
dominate our ensemble averages in this limit. Thus when we compute at pc ,  we are 
actually computing the shapes of the asymptotically large clusters. 
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Figure 1. A cluster with NL=7 and NZ= 13. Its statistical weight is p’q” .  

As was first pointed out by Kasteleyn and Fortuin [15], bond percolation can be 
related to the Potts model. This relationship has been used by a number of investigators 
to explore properties of percolating systems [ 131. Here we will generalise Stephen’s 
mapping onto a Potts model [13] in order to compute (%(”). 

At each site a we put a spin A, which takes the values A = 1, w, . . . , w n - ’ ,  where 
w = exp(2ni/ n ) .  In the n + 1 limit the partition function 

with parameter values 

= PI9 A = q B  

is that of bond percolation. To see this, multiply out the product over bonds and think 
of each US as an occupied bond. The multiplication results in a sum of traces of graphs 
3, where a given 3 has the form 

3 = Au,N ( a A a A m , )  (3.2) 
(U) 

where n,,) means a product over all occupied bonds of the graph 3. Upon taking the 
trace over spin configurations, we see that the 6 allow one independent spin sum for 
each connected cluster in 3, so that 

(3.3) Tr 3 = AuNhn N c  = qB-NhpNhn Nc 

where N b  is the number of bonds in 3’ and N ,  is the number of connected clusters. 
When n is set to 1, 

which is the percolation partition function. 
To obtain (Cb~.+~,~,), we must restrict the sum in Z to the graphs in which the sites 

a , ,  . . . , a ,  are connected to the origin. Let ro ,  . . . , r ,  be a set of m + 1 integers such 
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that C r, = 0 mod n, but no subset of the r, itself sums to 0 mod n. Then by explicit 
evaluation, 

( 3 . 5 )  
0 if a , ,  . . . , a, are not connected to the origin 

otherwise. Tr [ AE" . . . A k ( ' 6 )  fl ~ A , , A , , ]  = { N,  

Accordingly, 

= lim ( A $ .  . . A?;,,)Potts. 
n-1 

(3.6) 

This correlation function can be expressed in terms of a functional integral over a 
set of continuous fields z,( a ) ,  r = 1, . , . , n - 1, using the Hubbard-Stratonovich trans- 
formation [16].  Following Stephen [ 1 3 ]  we find that near p c ,  in the continuum limit 

(3 .7a)  w(m+l'(ql , .  . * 9 4"') =(zro(x=O)zr , (ql) . .  * zr,,,(qm)) 

where 

and 

j gzr e-"x 
n-1  J 9 z r  e-% 

(x) = lim 

WO 

3 !  
4 z ~ ( T o - V 2 ) z , - - A ( r l + r r + r 3 ) z r , z r , z r ,  

(3.7b) 

(3.7c) 

(3 .8 )  

In (3.8), summation convention is used on the spin indices, and all spin indices are 
to be taken as numbers mod n. With this convention, z: '(x) = z- , (x)  and A ( r )  = 1 if 
r = 0 and is 0 otherwise. If T, is the critical temperature of the theory, then To - T, is 
proportional to p - p c .  As is usual with such continuum models, an ultraviolet cut-off 
near k = A is implicit, where A is of the order of the inverse lattice spacing. If we now 
let G'" ' (q , ,  . . . , 4,) denote this theory's connected m-leg Green function at the spin 
index set r,, . . . , r,, but with the global momentum-conserving 6 function ( 2 7 ~ ) ~ 6 ( X  q l )  
factored off, then (3.7) implies that 

(3.9a) 

(3.9b) 

We now can use the known scaling properties of the Green functions to compute 
Ad and s d  in the limit as p + pc.  From a renormalisation group analysis, one finds 
that to leading order in the inverse cut-off a, [17] 

G'"'(q', To- Tc, WO) 

A,(m)(X,[To- T c ] ) " ~ ' " ' G ~ m ' ( ~ ' ( X , [ T o -  T,])-*P, t R =  K ,  U*; K ) .  (3.10) 

In (3.101, A,(m) and X ,  are non-universal, a , (m)  and 6, are critical exponents, and 
G R  is a Green function renormalised via minimal subtraction at the inverse length 
scale K and computed at the matching point. At this matching point the renormalised 

To- Tc 
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temperature rR is set to K and the renormalised coupling constant U = w / (  K F ’ 2 )  has 
flowed to its fixed point value U*. Combining (3.10) with (3.9) and substituting into 
our basic relation (2.13), we see that at pc all of the non-universal factors cancel out 
of both Ad and s d .  In fact, to compute either Ad or s d  one simply must replace the 
(e“’ in (2.13) by renormalised Green functions evaluated at the matching point. 

We first consider Ad. Following the above prescription, we explicitly find that 

d 
d - 1  

[ ( V I  * V2)2-(l/d)V:V:],~=oGf’(0, q ’ , .  . . , -q2;  *) 
A d  =- (3.11) 

[V:V:],l=,Gf’(O, ql,.  . . , -q2;  *) 
where * means at the matching point. It is useful to expand GF’ first in a power series 
in the momenta 4’ and q2.  Because (3.11) is second order in both V I  and in V 2 ,  we 
will only need the coefficients of ( 4 ’  - q2)2  and (q’ ) ’ (q2)*  to calculate A d .  Upon 
differentiating, one sees that 

(3.12b) 

Thus, using a Gf’ of the form 

GF’(0, ql,. . . , -42; * )= .  . . + a ( q ’ ) 2 ( q 2 ) 2 +  b(ql - 4 2 ) 2 + .  . . (3.13) 

in (3.11) yields the result that 

d + 2  
A -  

d - 2 ( l + d a / b ) ’  
(3.14) 

We must now calculate a lb .  In appendix 2 we renormalise (3.8) and show that 
u i = 2 ~ / 7 ,  where E =6-d .  Thus, to O ( E ) ,  Gf’ is the sum of the graphs shown in 
figure 2. We expand these graphs in ql and q2 before computing the loop integrals. 
This trivialises the loop integrals. Because all denominators now only involve the loop 
momentum, Feynman parameters are not needed. To keep proper track of the com- 
binatorics and of all terms in the expansion in the qi ,  we performed the actual calculation 
using the symbolic manipulation package S M P ~ .  Our resulting expansion for Gf’  is 
shown in table 1. To get a final value for Ad, we expand (3.14) to O ( E ) .  

One should notice that Ad does not vanish when d 3 6, even though the coupling 
constant U flows to U* = 0. Because Ad depends upon the ratio a /b,  a factor of U; 

a- - = -+ 
I 

Figure 2. The graphs which contribute to Gf’ to O ( E ) .  The first graph consists of the 
O(1) tree contribution, as well as all one-loop corrections to the tree’s propagators and 
vertices. 

t SMP version 1.5.0.. produced by Inference Corporation. 
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Table 1. The momentum expansions of  G'" and G"' for percolation and animals. Both 
models have identical expansions of Green functions to O(1). We have lumped the three 
momentum combinations (9ii)2(9'2 9 ' 1 ) ~  together because V:V:V: does not distinguish 
between them. 

Gpercolauan=.. ( 5 )  . + ( 1 6 8 + - ~ ) ( q '  *q2)2+(56+w~)(q')2(q2)2+.. . 

Gkt',,,l= +...  ( 1 6 8 - % ~ ) ( g '  . 9  2 ) 2 + ( 5 6 - ~ ~ ) ( q ' ) 2 ( q 2 ) 2 + . . .  

GbT,)he,=. . .-{36096(q' * q 2 ) ( q 2  * g' ) (q '  q3)+76 512(q')2(q2)2(q3)2+78 912[(9')2(q2 q 3 ) 2  
or permutations]). . . 

cancels between the numerator and the denominator. All corrections to the tree 
approximation do, however, vanish at the matching point. Thus, when d a 6  

Adp6=(d +2) / (6d+2)  (3.15) 

is exact. Because Ad has non-trivial d dependence above d = 6 ,  we have chosen to 
retain the exactly known dimension dependence resulting from q i  gradients. We expand 
to O( E )  the asymptotically known E dependence of a/  b. Our resulting expression for 
Ad is listed in table 2. 

Our treatment of s d  parallels that of Ad. Now, the relevant momentum combinations 
are (4 '  - q 2 ) ( q 2  q 3 ) ( q 1  - q 3 ) ,  all permutations of ( q 1 ) 2 ( q 2 .  qJ2, and ( q ' ) 2 ( q 2 ) 2 ( q 3 ) 2 .  The 
operator O(Vi) defined in (2.13) annihilates all momentum combinations except 
(q '  - q 2 ) ( q 2  q3) (q '  q 3 ) .  Accordingly, to evaluate (2.136) (with the substitution (e(')+ 
GE') we need the identities 

O(Vi)(q' * q 2 ) ( q 2 * q 3 ) ( q 1  * q 3 ) = ( l / d ) ( d  - l ) ( d  -2) (d2+6d+8)  (3.16a) 

(3.16b) 
(ql ' q 2 h 2  * q3)(4 '  * q3)  

(41)2(42 4312 
(q1)2(qz)2(q3)2 

v:v:v: 

Table 2. Expansions of Ad to O ( E )  and S, to O( 1). Above each theory's critical dimension, 
the E = 0 results are exact. 

2 + d  607 d ( d + 2 )  +-- 
2+6d 

2 + d  29 d ( d + 2 )  +-- 
2 + 6 d  288 ( 1  + 3d)' 

ApeIEOIBl IOI I  -- - 
4410 (1 + 3d)2 Epercola130n 

A m i m a l  

4 + 2 d  745 2 d + 4  
4 + 5 d  ' 3584 (5d +4)2  

47( d 2 + 6 d  + 8) 
797d2+822d+376 + W E )  

Syrcolaiton or animal = 
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V 

Figure 3. The graphs contributing to Sd to O( 1). 

We have computed S d  to leading order. The tree contributions to GF' are shown 
in figure 3. We give the expansions of these graphs to second order in the q i  in  table 
1, and our resulting value for s d  in table 2. 

4. Lattice animals 

We now modify the above calculation to treat lattice animals. In this case we average 
over all single clusters, giving a weight of p N b q N p h N s  to each cluster containing Nb 
bonds, Np perimeter bonds and Ns sites. A field theoretic representation of the animal 
ensemble has been developed by Harris and Lubensky [ 141. We simplify their theory 
slightly and consider the partition function 

Q = T ~  II ( ~ + U ~ , P , ~ S ~ ~ ~ J  e x p [ - ~ , ( p ~ + p ~ ~ - p ~ p ~ ~ ) ~  II ( p ,  e-HI+q,/n)) 
(an') sites 

(4 . la)  

(4 . lb)  

where pu  = (0, 1 )  is a site occupation variable, qu = 1 - p m  and H, is an external field. 
Upon expanding the products and evaluating the trace, one finds that 

( 
= Tr[exp(-Ho ({ Pu 1, { q u l ) ) I  

Q =  nNsZ+O(n2)  (4.2) 

where 

(4.3) 

The various animal partition functions are obtained by appropriate choices of U, K, 
and H,. For instance, bond animals ( q  = h = 1 )  are obtained by choosing K, = H, = 0 
and U = p .  

To compute %("'), we modify our percolation treatment and use the identity 

(4.4) 

After making a Hubbard-Stratonovich transformation [ 161, taking the continuum limit, 
dropping irrelevant interactions and rescaling we arrive at a field theoretic expression 
for %('"): 
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In  (4.5), K is a normalisation constant and  G('"+l) is an ( m  + 1)-leg Green function 
without the momentum conserving 6 function, at  spin indices ro ,  . . . , rm,  in the theory 
with free energy 

WO $ z:(  To - V 2 ) z ,  + f nRzi -- A( r l  + r2+ r3)z,, zr2zr, + &Hzo 3 ! J n  (4.6) 

The spin sums in %'now run from 0 to n - 1, because the z , + ~  fields from the percolation 
problem are now coupled to zo .  As before, To - T, is proportional to p - p , .  For this 
calculation, we always work to leading order in n. 

As is shown in appendix 3, X has upper critical dimension dc= 8 because of the 
nRzg term. When R is non-zero, the theory's critical behaviour is dominated by a 
single lattice animal fixed point. Harris and  Lubensky [ 141 show that the non-generic 
case of percolation ( q  = ( 1  - p )  while h = 1) corresponds to the multicritical point R = 0. 
At this multicritical point, d ,  reverts to six. The animal shape parameters we now 
compute are valid for the universality class of the animal fixed point. This class includes 
the case of bond animals. 

The calculation is complicated by the fact that zo has a non-zero expectation value. 
Accordingly, to evaluate expressions like (4.5) in perturbation theory we must first 
shift zo to remove all tadpole graphs. For given H and To,  let zo have expectation 
&Q, defining the equation of state 

( l / J n ) ( z o ) =  Q ( H ,  To). (4 .7)  

In the animal model H is fixed, while To can vary. To investigate shapes at p , ,  we 
will want to look at ratios of gradients of Green functions as To approaches the critical 
temperature T, = T,( H). Thus, we must investigate limits of the form 

where the G, are gradients of Green functions. Renormalisation groups are set up  to 
directly treat theories at  constant Q. For fixed Q, H = H( Q, To) is set via the equation 
of state. By choosing to fix Q at the special value Q = Qc= Q ( H ,  T c ( H ) ) ,  we can 
compute Z12 using a theory at constant Q. Clearly, 

Just as in the percolation case, a renormalisation group analysis at constant Q shows 
that 

(4.10) 

As for percolation, A, ( m )  and X ,  are non-universal, while a, ( m )  and b, are critical 
exponents. We now match by setting the renormalised temperature in the shifted 
theory, t R ,  to the renormalisation scale K .  The true dimensionless renormalised coupling 
constant is U = g / K f  = w * R / K '  which is set to its fixed point value at the matching 
point. We make no explicit reference to Q because it only enters our calculations by 
ensuring that the tadpole graphs vanish in the shifted theory. 
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Upon comparing (4.10) to (3.10), we see that to compute Ad and S d  for animals, 
we need the same coefficients in the momentum expansions of G f '  and Gc' as were 
needed for percolation. In appendix 3 we give a renormalisation group treatment of 
(4.6). Above d,  only tree graphs contribute to Ad and s d ,  exactly as for percolation. 
But to tree order, the only way the Feynman rules for animals differ from those of 
percolation is in the bare propagator of the zo field. Because no subsum of the r, 
indices of the external legs can sum to 0, there are no zo lines allowed. Thus, term by 
term, the tree contributions to G f )  and G;' for animals are identical to those of the 
percolation model. Accordingly, above d ,  animals and percolation clusters have the 
same shape parameters. 

Below d ,  there are corrections of O(E).  We show in appendix 3 that these can be 
computed using a simple modification of the S M P  code of our percolation calculation. 
The resulting expansion of Gf '  is listed in table 1. Our  value of Ad is in table 2. 

5. Discussion 

The results of our E expansion are summarised in table 2. In tables 3 and 4, we have 
evaluated these formula: in dimensions d = 2,3,6 and cc for A d ,  and in d = 3 , 6  and 
CO for s d .  (Because Tr Q3 = 0 in d = 2, S2 has no meaning.) We first notice that even 
in d =2,  where ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ = 4  and = 6, the corrections to mean-field theory are 
only about 30%. Thus, our  E expansion converges fast enough for a comparison of 
our results with those of Family et a1 [3] to be meaningful. We confirm that both 
percolation and animals have fairly anisotropic clusters. In  both cases, A, is about 
30% of its maximum value 1. This agrees qualitatively with the finding of Family er 
a1 [3] that A, is about 0.3-0.4, where A, = 1 implies spherical symmetry, but quantita- 
tively our measure implies that the clusters are more symmetric than A, suggests. We 
d o  confirm that animals are a bit more anisotropic than percolation clusters, although 
our computed difference A;nima' - A2perco'ation - 0.091 is a bit less than the difference 

Considering that A 2  and S2 are quite 
different measures of anisotropy and that we are comparing in a dimension where E 

Aqercolation - Aanimal -0.1 found by Family et al. 

Table 3. Numerical values for A d ,  written in the form: mean field + ( O ( E )  correction). 

d = 2  0.286 + (0.088) 0.286 + (0.099) 0.577+(0.016) 
d = 3  0.250+ (0.062) 0.250+ (0.076) 0.526+ (0.006) 
d = 6  0.21 1 0.21 1 + (0.027) 0.471 
d = c c  0.167=; 0.167=6 0.400 = 3 

Table 4. Numerical values of S,, 

SEI"""' Spolymer 
d d 

d = 3  0.164 0.444 
d - 6  0.111 0.350 
d = w  0.059 = $& 0.229 = 5 
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is four for percolation and is six for animals, our agreement with Family et a1 seems 
reasonable. 

Tables 2 and 3 show that AYima' L APdercolation in all dimensions. This inequality can 
be understood by considering the relative weightings of a given cluster in the two 
models. For concreteness, we represent the animal universality class by bond animals. 
Then a cluster containing Nb bonds and whose perimeter contains Np bonds has 
statistical weights W 

Wanimal=  pNh 

Wpercolat ion= pNh(1 -P)"P* 

Compared to the animal problem, percolation has an effective surface tension. Clusters 
with larger perimeters are statistically suppressed. Accordingly, lattice animals should 
be more anisotropic than percolation clusters, unless almost all clusters of size Nb, 
for large Nb, have essentially the same Np. This is precisely what one expects to 
happen above d,, where the clusters are dominated by trees. Thus it is not surprising 
that percolation clusters and lattice animals have the same values of both Ad and s d  

for d 3 8. 
In order to compare our results with Aronovitz and Nelson's results [ 121 for polymer 

shapes, we have converted their results to d-dimensional measures in appendix 4. We 
list the long-chain polymer values for Ad and S,  in tables 2-4, along with our results 
for clusters. It is clear that in all dimensions, polymers are both more anisotropic and 
more prolate than clusters are. Furthermore, there seems to be a general trend that 
models become more symmetric and less prolate as d is increased. Increased available 
phase space seems to favour symmetry. 
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Appendix 1. Derivation of amplitude ratio inequalities 

We first consider Ad and prove inequality (z.5). Suppose that the Q of a given cluster 
has average eigenvalue h .  Recalling that Q = Q - x1 and that Q is positive definite, 
we see that the A i  satisfy 

- 
A j 3 - A  (Al . la )  

and 

c ii = 0. 
I 

(Al.l  b )  

Together, ( A l . 1 ~ )  and (Al.l  b )  define a (d  - 1)-dimensional simplex (hyper-tetrahe- 
dron) embedded in d space, centred at the origin (ii = 0) with corners at coordinates 



Shapes of percolation clusters and lattice animals 255 1 

i # , = ( d - l ) i  and i,+l,= -i, This embedding is illustrated for the drawable case of 
d = 3 in figure 4( a ) .  The simplex appropriate to d = 4 is shown in figure 4( b).  Let a 
particular set of 1, lie at the vector U = ( I I , .  . . , id ) .  Then 

Tr Q’ = 1; = u * U. (A1.2) 

We see that Tr Q’ is maximised when U is as large as it can be. This occurs at the 
simplex’s corners. The minimal value Tr Q’ = 0 is achieved at the centre (U = 0). Thus, 
O s T r  Q’s [(d - 1) i I2+(d  - 1 ) i 2 =  (d  - 1)di’  = [(d - l ) /d](Tr  Q)’ (A1.3) 

and (2.5) is proved. 
The proof of (2.7) is m p e  invo!ved. We first notice that if ul = at(*, then Tr Q: = 

a3 Tr Q:. Accordingly, f ( Q )  = Tr Q3 must reach its extrema1 values on the simplex’s 
boundary. As a step towards finding these extrema we first treat f on the set 

Y = { u ( v ’ = R 2 } n  u l C A I = O  . (A1.4) 

The construction of Y in three dimensions is shown in figure 5 .  Using Lagrange 

I 

{ - I  

( b )  

Figure 4. The cases d = 3 and d = 4. (a )  The 2-simplex embedded in three space; ( b )  the 
3-simplex. The vectors U”’ are also illustrated. 

Figure 5. Y is shown for the case d = 3 .  The open circles are the minimising extrema U’, 
while the full circles are the maximising extrema U’. 
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multipliers, one can easily show that the components of a given extrema1 vector ue 
can have only two values. Because X i  i: = 0, the only possible extrema occur at the 
vectors U"' such that m of the components of U"' have the value ( d  - m)lxl /m,  while 
the other ( d  - m )  components are - lx / .  U"' must also satisfy (U")'= R 2 ,  which implies 
that 

mR2 
d ( d  - m )  

x2= 

For convenience, we choose R' = d. We now see that 

d ( d / m  -2)  
( d / m  - 1)"' 

(A1.5) 

(A1.6) 

is a strictly decreasing function of m for the case of interest, m < d. Thus, Z i; is 
minimised on Y at u(~-') and is maximised at U'. 

The u(~-') point to the centres of the faces of the simplex, while the U' point to its 
corners. The face centres are the points on the simplex's boundary which are closest 
to the origin, while the corners are furthest away. Thus the amount of scaling necessary 
to project a point from Y onto the simplex is smallest at the u(~-') and is greatest for 
the U'. Accordingly, Z i: is minimised on the simplex at the face centres umin and is 
maximised at the simplex's corners. umin has d - 1 components with the value i / ( d  - l ) ,  
and one component -i. Thus, 

or, in terms of traces, 

Tr @ S  (Tr Q)3 
(Tr 9)' d' 
( d  - l)'< ( d  - l ) ( d  - 2 )  

-- 

(Al.7) 

(A1.8) 

and (2.7) is proved. 
Our interpretation of Tr Q' as a measure of a generalised version of oblateness 

against proiateness follows from the observation that for the critical points U"', the 
sign of Tr Q3 is positive when there are less large eigenvalues than small ones. This 
qualitatively indicates the trend in the sign of Tr 6'. 

Appendix 2. Renormalisation of the Potts model 

In this appendix, we renormalise the Potts model (3.8). Our treatment is similar to 
that of Amit [18] who treats a slightly different representation of this model. We first 
define the dimensionless bare coupling constant uo by 

WO = uo K E ' 2 ,  (A2.1) 

We then use minimal subtraction to fix uo and the renormalisation functions Z, and 
2 , 2  by demanding, in the critical theory ( To = T J ,  that the renormalised vertex functions 

rg) = z, r(2) (A2.2a) 

(A2.26) 

(A2.2 c )  

r(3) = z3/2r(3) 

r(2.I) = z42r(2,1) 

4 

are finite. To O ( u 2 ) ,  the relevant graphs are shown in figure 6. 
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Figure 6. The graphs which renormalise ( a )  T‘”, ( b )  r(3J and ( c )  r‘’~’’. 

We find that to O ( u 2 )  

Z ,  = 1 + [ ( 2 - n ) / 6 & ] u 2  

2*2 = 1 + [ ( 2  - f l ) / & ] U 2  

uo= u { l +  [(  l o - 3 n ) / 4 & ] u 2 } .  

p = -1 2 ~ ( d  In u o / d u ) - ’ =  - f u [ ~ - f ( 1 0 - - 3 n ) u ~ ]  

r l P o t t s = - &  

vpdtts = 2 - 2 1  E.  

In the standard way [ 1 7 ] ,  these relations lead to the p function 

and to the expected exponents (in the n + 1 limit), 

The fixed point coupling constant at n = 1 is 
2 2  U * = j & .  

( A 2 . 3 ~ )  

(A2.3 b )  

( A 2 . 3 ~ )  

(A2.4)  

( A 2 . 5 ~ )  

(A2.5 b ) 

(A2.6)  

At finite temperature, renormalised Green functions are computed using the formula 

Gk”(q’, t , ,  U, K )  = Z i ( ” 2 ) G ( m ) ( q ’ ,  ( T o -  T,) = trz ,z /Z, ,  wo). (A2.7) 

Appendix 3. Renormalisation of the lattice animal model 

Consider the shifted theory defined by (4 .6) .  At bare shifted temperature TR and to 
leading order in n, the z ,  fields have the bare propagators 

( A 3 . l ~ )  

= g ( q )  - nRS,,g2(q).  ( A 3 . l b )  

To see how the zo field modifies perturbation theory, consider expanding T;:),Jq) to 
one-loop order. The relevant graphs are shown in figure 7 .  Writing them out explicitly 

U- r[Z’= - - 

Figure 7. The expansion of I-:’( q )  to one-loop order 



2554 J A Aronovitz and M J Stephen 

and discarding terms which vanish when n + 0 we see that 

We now consider the nRzi/2 term in the action to be a new vertex, rather then a part 
of the bare propagator. Viewed this way, (A3.26) has two types of one-loop corrections 
to r(*): the first term, in which no nRzi vertex is inserted and where the sum over 
internal spin components gives a factor of n, and the second term, in which an nR is 
explicitly inserted and where there is no spin sum. 

This pattern of contributions to leading order in n is generally true. Because the 
nR insertions force an extra propagator into each loop, they are more infrared divergent 
than the other terms. This raises the critical dimension of the theory to eight. Near 
d = 8 the terms without an nR insertion are irrelevant to the inferred behaviour of the 
theory. Unfortunately, above d = 6 these irrelevant terms are non-renormalisable in 
the ultraviolet. To get around this technical problem, we define a renormalised 
perturbation theory which, when cut off, reproduces the leading inferred divergences 
near d = 8. To do this, we take the limit wi+  0 while keeping wi R fixed. Within this 
scheme, to leading order in n 

(A3.3) 

The pure wi term has been dropped. 
By its construction, this new theory has the same divergence structure as the Potts 

model, except that now we expand about d ,  = 8 rather than d,  = 6 .  The dimensionless 
coupling constant is now 

U g / K E  = W'R/K'.  (A3.4) 

As in appendix 2 ,  we fix uo and the renormalisation functions using minimal subtraction. 
We again demand that (A2.2) are finite in the critical theory and add the additional 
renormalisation condition that Ro = R. We find that 

2, = 1 + (1/2&)U 

2 ,~  = 1 + ( ~ / E ) u  

uo= U [ l + ( 9 / 2 & ) U ]  

WO = w[ 1 + (9/4&)U] 

(A3.5 a )  

(A3.56) 

( A3.5 c ) 

(A3.5d)  

so that 

and 
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These relations lead to the critical exponents 
7 = -;& ( A 3 . 8 ~ )  
v = l + r &  ( A3.8 6 ) 

which agree with the values Lubensky and Isaacson [2] have calculated for this model. 
It is useful to notice that computing a one-loop graph in this theory is equivalent 

to computing the graph using the percolation Feynman rules with all spin sums 
suppressed, and then differentiating once with respect to To and replacing w i  with go. 
This rule is explicitly verified by our above computation of r(2): 

2 36 

(A3.9) 

To prove the rule, we first notice that changing the nRz:/2 term in the action to 
nRz,z-, (for r # 0 not summed over) does not change the value of any one-loop graph 
which we need for Ad or s d .  Thus a one-loop graph which has the value G will have 
the new value G,,, = nG in the new theory where nR&2 is replaced by X nRz,z-,/2. 
This replacement can be absorbed into a temperature shift, T$+ T$+ nR. This shift 
gives back the percolation Feynman rules, except that spin sums now carry a factor 
of n which cancels the 1/ n in G = G,,,/ n. Our derivative rule follows from expanding 
G,,, to leading order in n and setting w i  to 0 while holding Rw; constant. 

The rule allows us to compute the O ( E )  corrections to Ad for animals using the 
same graphs and combinatorics as were used for percolation. The T$ derivative can 
be considered to be a change in the rules for evaluating one-loop integrals. Thus, we 
can compute the O ( E )  corrections to Ad for animals using essentially the same S M P  

code as was used for percolation. 

Appendix 4. Conversion of polymer shape results 

In this appendix, we adapt Aronovitz and Nelson’s results on polymer shapes to give 
formulae in a form easily comparable to ours. To compute Ad and s d  for polymers, 
one makes the replacements 

( A4.1 a ) 
(A4.1 b)  

where GF*””(*) is a propagator with M momentum insertions in the theory with free 
energy functional 

2 G ~ ( o ,  ql, .  . . , -4 ; *) + G ~ . ~ ) ( O ,  0; ql, .  . . , -q2;  *) 

Gg’(0, q ’ , .  . . , -q3 ;  *) + GgV6’(0, 0; q ’ ,  . . . , -4 3 ; *) 

2= d x f S .  ( - V 2 +  T)S+(A/4!)(S)4.  (A4.2) 

In (A4.2), S is an n-component field, the limit n + 0 is to be taken on all Green 
functions and the matching point is at tR = K and U* = 3.~14. 

I 
To compute Ad we need 

(A4.3) ~ ( 2 . 4 1 =  R 

Aronovitz and Nelson report that 

( a ~ ) 2 ( d 3 2 1 q ~ = o G ~ , 4 ’  = 4(a + b)  = 5 7 6 + ? ~  ( A 4 . 4 ~ )  
(A4.4b) 

(a :a t . ) (a :a : ) I ,~=~Gg.~ ’=  2b = 1 2 0 + ? ~  ( A 4 . 4 ~ )  

. . . + ~ ( q l ) ~ ( q * ) ~ +  b(ql  q 2 ) + .  . , . 

(~3:)~(d;.)~I,,=o GR (2.4) = 40 = 320+ 1 0 9 ~  
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so that 

a = 8 0 + 7 ~  

b=64+23’  10 E 

and from (3 .15)  

745 2 + d  +- 2 + d  - A y b m e r  = d + 2  
2 ( 1 + d a / b ) - 2 ( 1 + 5 d / 4 )  7168 ( 1 + 5 d / 4 ) 2 E ’  

To compute S d ,  we directly computed that 

GFT6’(*)=. . . - {512(q ’  * q 2 ) ( q 2 * q 3 ) ( q 1  * q 3 ) + 2 8 0 ( q 1 ) 2 ( q 2 ) 2 ( q 3 ) 2  

+ 672[ (SI)’( q2 q3)2  or permutations]} + . . . 
which implies that 

Spolymer - 8( d 2 + 6 d  + 8 )  - 
35d2 +- 84d + 64’  d 

( A 4 . 5 a )  

(A4.5 b )  

( A 4 . 6 )  

(A4.7)  

(A4.8)  
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